Combination of multiple classifiers using probabilistic dictionary and its application to postcode recognition
نویسندگان
چکیده
Combination of multiple classi ers is regarded as an e+ective strategy for achieving a practical system of handwritten character recognition. A great deal of research on the methods of combining multiple classi ers has been reported to improve the recognition performance of single characters. However, in a practical application, the recognition performance of a group of characters (such as a postcode or a word) is more signi cant and more crucial. With the motivation of optimizing the recognition performance of postcode rather than that of single characters, this paper presents an approach to combine multiple classi ers in such a way that the combination decision is carried out at the postcode level rather than at the single character level, in which a probabilistic postcode dictionary is utilized as well to improve the postcode recognition ability. It can be seen from the experimental results that the proposed approach markedly improves the postcode recognition performance and outperforms the commonly used methods of combining multiple classi ers at the single character level. Furthermore, the sorting performance of some particular bins with respect to the postcodes with low frequency of occurrence can be improved signi cantly at the same time. ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
منابع مشابه
Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملImprovement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination
Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...
متن کاملA modification of probabilistic hesitant fuzzy sets and its application to multiple criteria decision making
Probabilistic hesitant fuzzy set (PHFS) is a fruitful concept that adds to hesitant fuzzy set (HFS) the term of probability which is able to retain more information than the usual HFS. Here, we demonstrate that the existing definitions of PHFS are not still reasonable, and therefore, we first improve the PHFS definition. By endowing the set and algebraic operations with a new re-definition of P...
متن کاملClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 35 شماره
صفحات -
تاریخ انتشار 2002